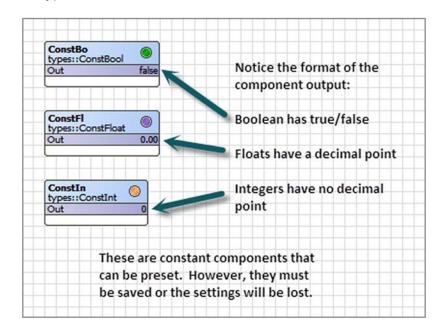
### **Using Sedona 1.2 Components**



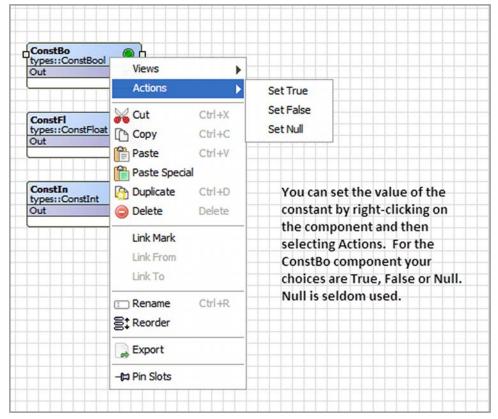
# **Using Sedona 1.2 Components from Tridium's Kits**

### Introduction

This application note assists in the understanding of the Sedona components provided in Tridium's Sedona-1.2.28 release. Some of the Sedona components were changed or added since the previous release. New with the 1.2 release is that the Sedona components, previously concentrated in one Control kit, are now organized in smaller kits under a functional name. Components discussed in this document can be found in the following kits:

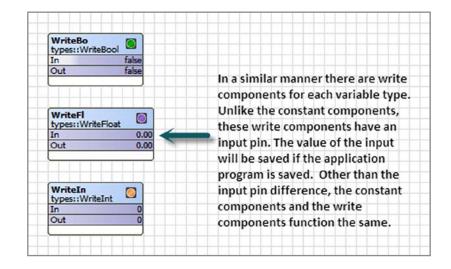

- basicSchedule
- datetimeSTD
- func
- hvac
- logic
- math
- pricomp
- timing
- types

The intent of this document is to explain the potential use of those components supplied by Tridium in their Sedona 1.2 release. All are included in Contemporary Controls' BASremote and BAScontrol product families. They have not been modified for use in these products. Contemporary Controls has product specific Sedona kits that address the uniqueness of the IO structure in the BASremote and BAScontrol products. These kits are not mentioned in this document. It is Contemporary Controls' policy to provide all Sedona kits to the Sedona Framework community without charge or license. This includes kits obtained from Tridium, kits with modified Tridium components, kits developed solely by Contemporary Controls to improve the control options available to systems integrators, and kits specific to Contemporary Controls' hardware. Any feedback is welcomed.

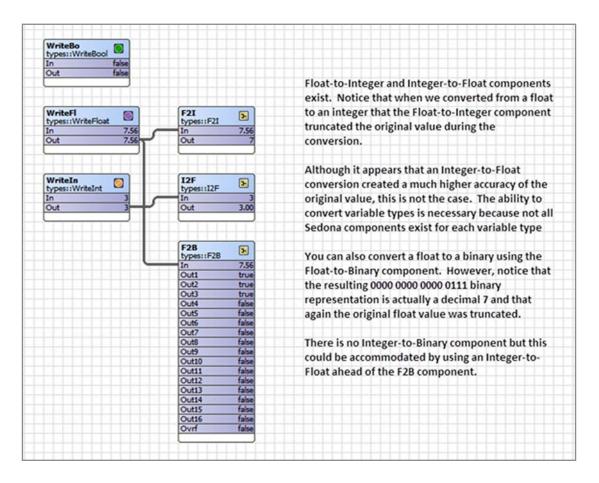



#### Variable Types

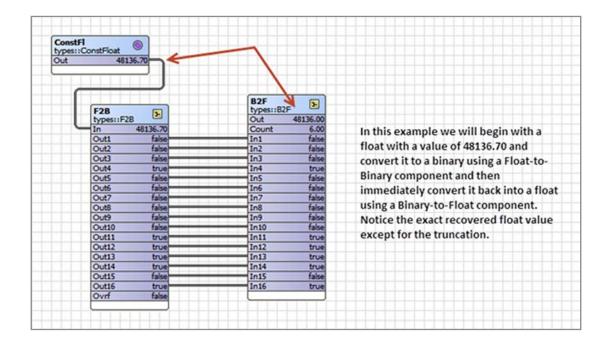
Although there are several variable types used by Sedona, three are the most interesting — Boolean, Float and Integer. You can define constants for each type and use converting components to change the data representation to a different type.

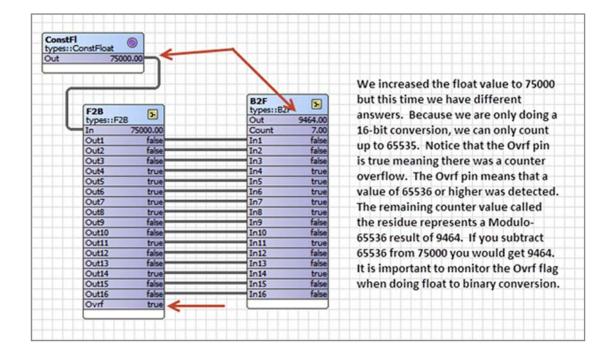



#### **Configuring Constants**



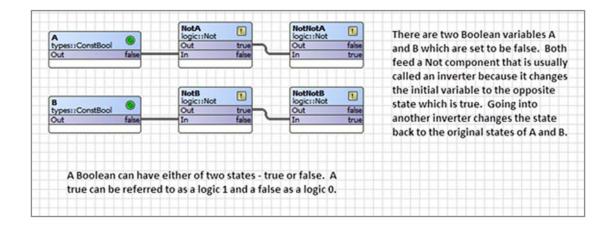

CONTEMPORARY ONTROLS


#### Using Write Components




#### **Converting Between Component Types**

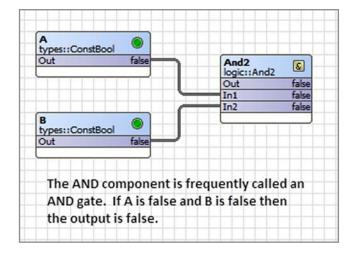


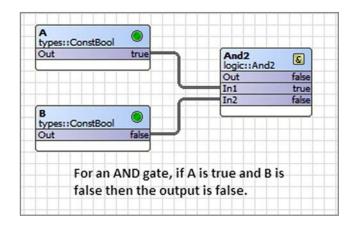

#### Float-to-Boolean and Boolean-to-Float Conversion



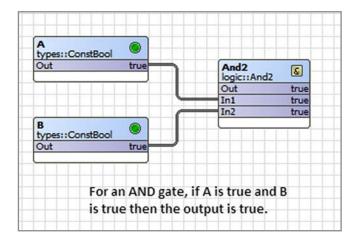


AN-SEDONA01-BA1

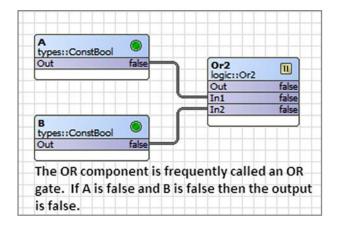

#### Negating a Boolean Variable — Inverting Your Logic

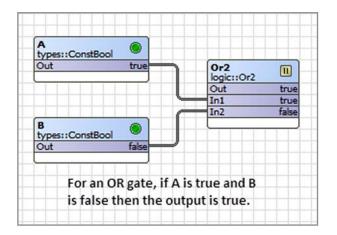


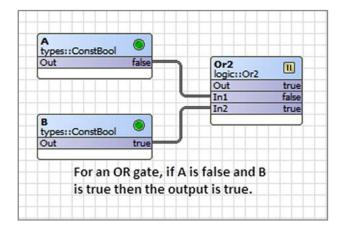

| A                     |      | NotA<br>logic::Not |       | NotNotA<br>logic::Not |       |                                                                 |
|-----------------------|------|--------------------|-------|-----------------------|-------|-----------------------------------------------------------------|
| types::ConstBool      | -    | Out                | false | Out                   | true  | Variable A is now set to be                                     |
| Out                   | true | In                 | true  | In                    | false | true. Notice the output of the                                  |
|                       |      |                    |       |                       |       | first inverter changes the                                      |
|                       |      | NotB<br>logic::Not |       | NotNotB<br>logic::Not |       | value of A to a false while the<br>second inverter restores the |
| R                     |      | Out                | true  | Out                   | false |                                                                 |
| B<br>types::ConstBool | -    |                    | false |                       |       | state of A back to true.                                        |

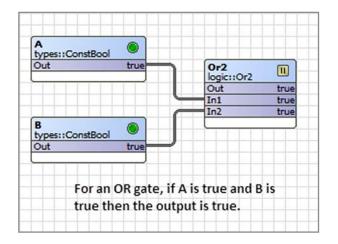



### Boolean Product — "ANDing" Boolean Variables

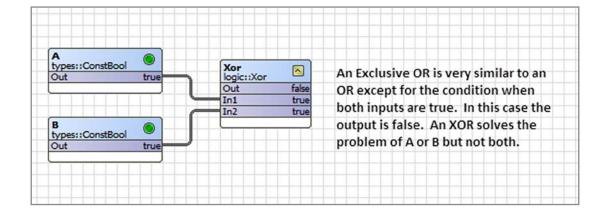


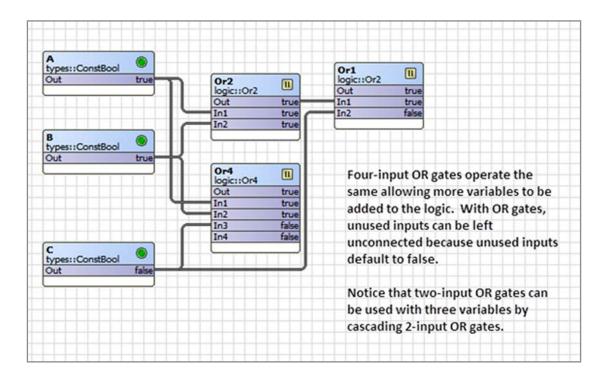


| A<br>types::ConstBool |             |                       |
|-----------------------|-------------|-----------------------|
| Out                   | false       | And2<br>logic::And2   |
|                       |             | Out false             |
|                       |             | In1 false             |
|                       | 6           | In2 true              |
| B<br>types::ConstBool |             |                       |
| Out                   | true        |                       |
|                       |             |                       |
| For                   | an AND gate | , if A is false and B |
|                       |             | output is false.      |



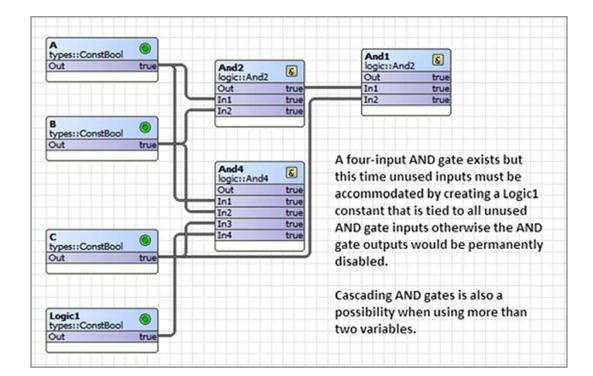

### Boolean Sum — "Oring" Boolean Variables

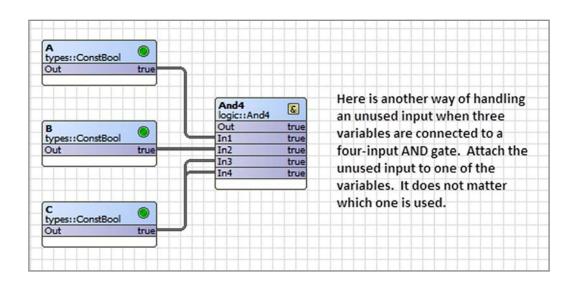




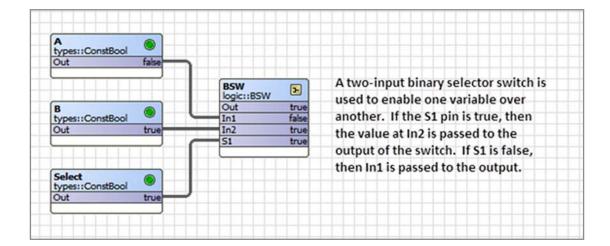


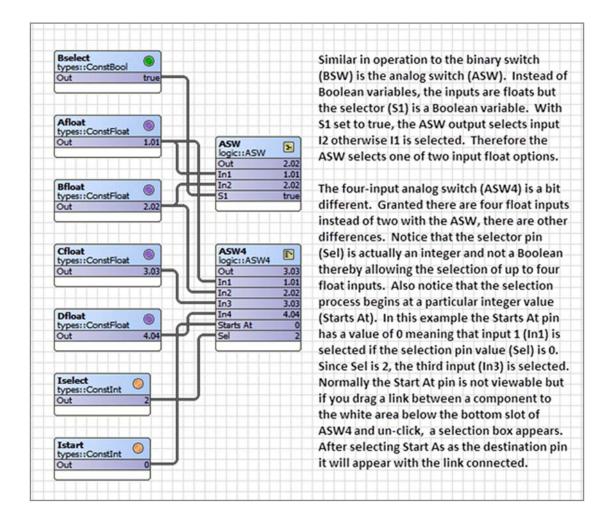


#### Exclusive OR — A OR B but Not Both




#### **Cascading Logic Blocks and Unused Inputs**



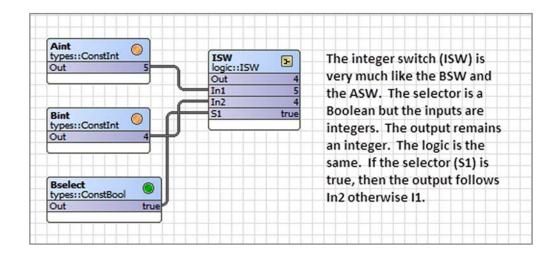

#### **Cascading Logic Blocks and Unused Inputs (continued)**



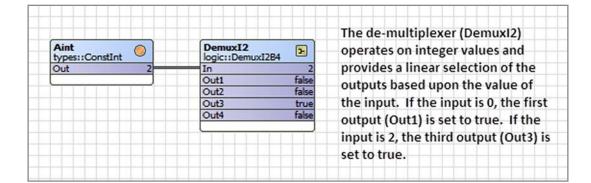


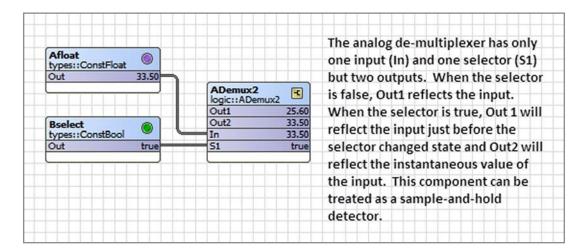

AN-SEDONA01-BA1

#### **Boolean, Float or Integer Selection**

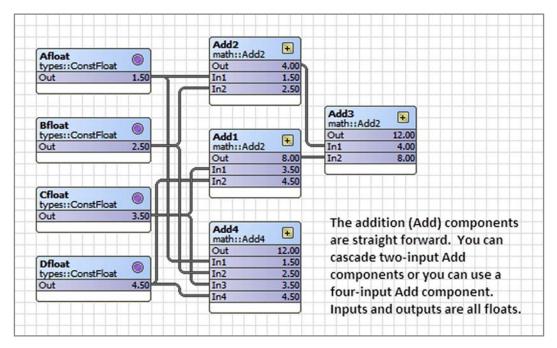




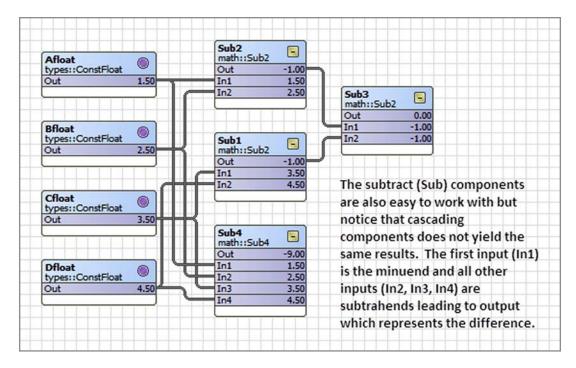


CONTEMPORARY ONTROLS


#### **Boolean, Float or Integer Selection (continued)**

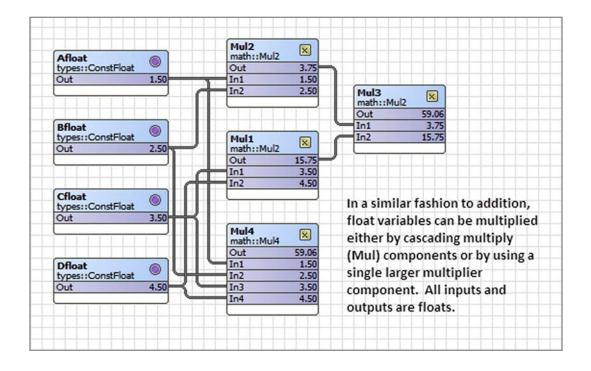
| start [Source]             | ASW4 [Target]                                           |
|----------------------------|---------------------------------------------------------|
| O Meta                     | () Meta                                                 |
| O Out                      | Out                                                     |
| O Set                      |                                                         |
| 0 000                      | ○ In2                                                   |
|                            | In3                                                     |
|                            | In4                                                     |
|                            | Starts At                                               |
|                            | Sel                                                     |
|                            |                                                         |
|                            |                                                         |
|                            |                                                         |
|                            |                                                         |
|                            |                                                         |
|                            |                                                         |
|                            |                                                         |
|                            |                                                         |
|                            |                                                         |
|                            |                                                         |
|                            |                                                         |
| ink Istart.out -> ASW4.sta | tsAt                                                    |
|                            |                                                         |
|                            | OK Cancel                                               |
| Out 0                      |                                                         |
|                            | This is the dialog screen you will see when you need to |
|                            |                                                         |




#### **De-Multiplexing**







#### **Float Addition**



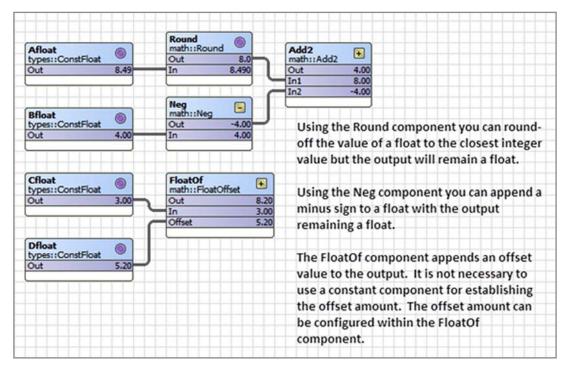
#### **Float Subtraction**



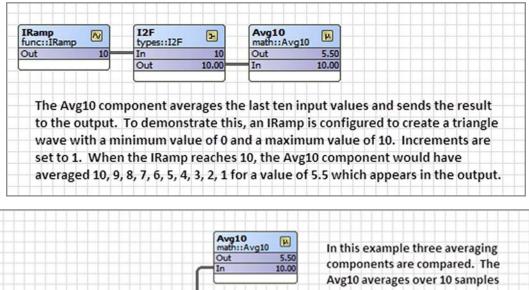
#### **Float Multiplication**



#### **Float Division**

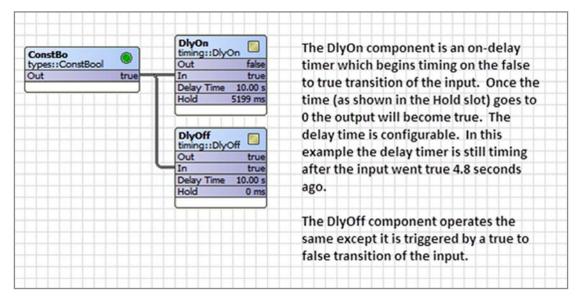

| Afloat<br>types::ConstFloat |      | Div2 |                                     | Division is also straight forward.   |
|-----------------------------|------|------|-------------------------------------|--------------------------------------|
| Out                         | 8.00 |      | •                                   | Input 1 (In1) is the dividend, input |
|                             |      | Out  | 2.00                                |                                      |
|                             |      | In1  | 8.00                                | 2 (In2) is the divisor and the       |
|                             | (    | In2  | 4.00                                | output (Out) is the quotient.        |
| Bfloat<br>types::ConstFloat |      |      | Dividing by zero will result in the |                                      |
| Out                         | 4.00 |      |                                     | pin Div0 being set to true.          |

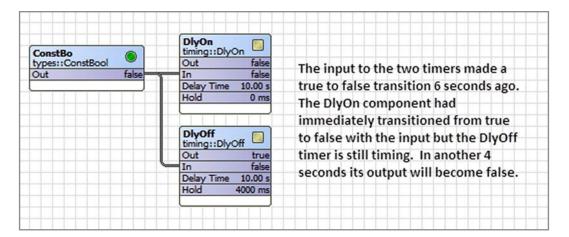
### Finding Minimums and Maximums


| Afloat<br>types::ConstFloat | 0    | Max<br>math::Max<br>Out | 8.00 |                                                                         |
|-----------------------------|------|-------------------------|------|-------------------------------------------------------------------------|
| Out                         | 8.00 | In1                     | 8.00 | The Max component output (Out)                                          |
|                             |      | In2                     | 4.00 | reflects the maximum value of the two input floats (In1, In2) while the |
| Bfloat<br>types::ConstFloat |      | Min<br>math::Min        |      | Min component reflects the                                              |
| Out                         | 4.00 | Out                     | 4.00 | minimum value of the two inputs.                                        |
|                             |      | In1                     | 8.00 |                                                                         |
|                             |      | In2                     | 4.00 |                                                                         |

| IRamp 🕅        | I2F D               | MinMax math::MinMax                                | The MinMax component is a bit<br>more complex. There is only one |
|----------------|---------------------|----------------------------------------------------|------------------------------------------------------------------|
| func::IRamp    | types::I2F          | Min Out 4.00                                       | input and two outputs. If R is held                              |
| Out 8          | In 8<br>Out 8.00    | Max Out 8.00                                       | in the true state, the two outputs                               |
|                | 0.00                | Min Out 4.00<br>Max Out 8.00<br>In 8.00<br>R false | simply reflect the input state. If R                             |
|                |                     | is false, the Min Out captures the                 |                                                                  |
|                | e this operation, a | · · · · · · · · · · · · · · · · · · ·              | lowest value of the input while                                  |
|                | enerate a triangle  | Max Out captures the maximum o                     |                                                                  |
|                | e of 4 and a maxim  |                                                    | the input. When connecting up th                                 |
|                | onent captured the  |                                                    | component for the first time you                                 |
| the need of an | Integer-to-Float c  | onverter.                                          | should reset the component.                                      |

#### **Rounding Off Floats**

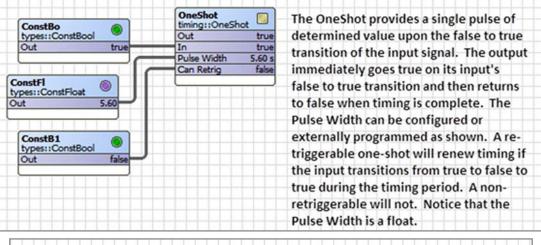




#### **Averaging Successive Readings**



| IRamp 💦                 | 12F                              | AvgN                                 | Avg10 averages over 10 samples<br>but the data must change to<br>trigger a new sample. The AvgN<br>component can be configured for       |  |
|-------------------------|----------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| unc::IRamp 20<br>Dut 10 | types::I2F<br>In 10<br>Out 10.00 | Out 8.80<br>In 10.00                 |                                                                                                                                          |  |
|                         |                                  | Reset false                          | the the number of samples but it<br>samples every scan and not on just                                                                   |  |
|                         |                                  | TimeAvg<br>math::TimeAvg<br>Out 4.77 | a change in value. The TimeAvg<br>averages over a fixed period of<br>time which is configurable. The<br>output does not change until all |  |
|                         | C                                | In 10.00<br>Time 100000 ms           |                                                                                                                                          |  |
|                         |                                  |                                      | samples are obtained.                                                                                                                    |  |

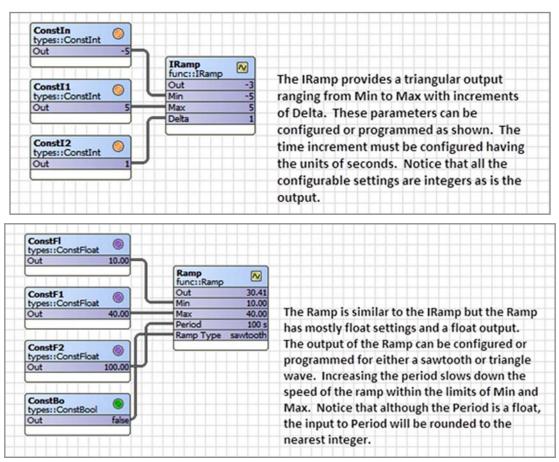
#### **On-Delays and Off-Delays**






#### Using the Timer

|                  |                                   | The Timer component will count                                                      |
|------------------|-----------------------------------|-------------------------------------------------------------------------------------|
| ConstBo          | Timer                             | down from a predetermined                                                           |
| types::ConstBool | Out true                          | amount when the Run input is true.                                                  |
| Out true         | Run run<br>Time 60 s<br>Left 49 s | A constant integer component was<br>used to set the time although the               |
|                  |                                   | Timer component can be internally<br>configured. The output will remain             |
| ConstIn O        |                                   | true during timing and transition                                                   |
| Out 60           |                                   | false upon completion or if the Run                                                 |
|                  |                                   | input goes false. To begin a new<br>timing period, the Run input must<br>be cycled. |


#### Using One-Shots — Mono-Stable Multivibrators

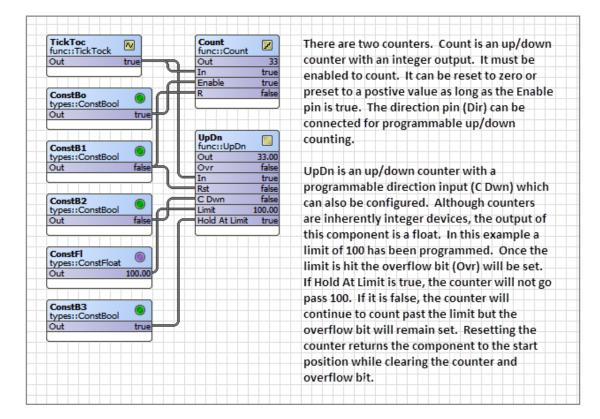


| TickToc<br>func::TickTock |      | B2P<br>logic::B2P                     |       |  |
|---------------------------|------|---------------------------------------|-------|--|
| Out                       | true | In                                    | false |  |
|                           |      |                                       |       |  |
|                           |      |                                       |       |  |
|                           |      |                                       |       |  |
|                           |      |                                       |       |  |
|                           |      | · · · · · · · · · · · · · · · · · · · |       |  |

The Boolean-to-Pulse (B2P) converter is actually a very simple single-shot in that it outputs a true for only one scan time when its input goes from false to true. There are no time settings. It is used when a pulse is required after detection of an event instead of a logic level.

#### **Creating Ramps** — A-Stable Multivibrators




### **Comparing Two Floats**

| Ramp                        | Cmpr<br>func::Cmpr<br>Xgy true<br>Xey false                       | The comparator component (Cmpr)<br>compares the the X input to that of<br>the Y input. If X is less than Y, then |
|-----------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| func::Ramp<br>Out 76.34     | Xly false<br>X 72.34 the Xly output i<br>Y 50.00 then Xey is true | the Xly output is true. If X equals Y                                                                            |
| ConstFl                     |                                                                   | then Xey is true. If X is greater than Y<br>then Xgy is true. Both inputs are floats                             |
| types::ConstFloat Out 50.00 |                                                                   | and the outputs are Booleans. In this example the output of the Ramp is                                          |
|                             |                                                                   | compared to that of a constant. Using the default values of the Ramp, the                                        |
|                             |                                                                   | input X varies as a triangle between 0<br>and 100 every 10 seconds. You can                                      |
|                             |                                                                   | watch how the comparator outputs<br>change over this range.                                                      |

#### A Simple Clock — the TickToc

|                       |                   | Freq                        | The TickToc component provides a<br>convenient clock from 1 to 10 pulses per |
|-----------------------|-------------------|-----------------------------|------------------------------------------------------------------------------|
| TickToc               | <b>№</b><br>false | Pps 1.000 /s                | second. However, because of the                                              |
| func::TickTock<br>Out |                   | Ppm 60.000 /min<br>In false | controller scan time and other processing                                    |
| out                   |                   |                             | overhead it is recommended to use its                                        |
|                       |                   |                             | default value of one second. More                                            |
|                       |                   |                             | accurate timing is available from a real-                                    |
|                       |                   |                             | time clock.                                                                  |
|                       |                   |                             | The Freq component can provide output                                        |
|                       |                   |                             | values in pulses-per-second (Pps) or                                         |
|                       |                   |                             | pulses-per-minute (Ppm). Because of the                                      |
|                       |                   |                             | low-speed nature of these two                                                |
|                       |                   |                             | components, the Ppm calculation will<br>probably be the most useful.         |

#### **Introducing Counters**



#### **Operating on Real-World Signals — Hysteresis and Limiting**

| Ramp<br>func::Ramp           |       | Hystere<br>func::Hysteresis     | The hysteresis component (Hystere) has                                                 |
|------------------------------|-------|---------------------------------|----------------------------------------------------------------------------------------|
| Out                          | 65.15 | In 64.91                        | separate rising-edge and falling-edge                                                  |
|                              | _     | Out true<br>Rising Edge 60.00   | trip points when setting a trigger on a                                                |
| ConstFl                      |       | Falling Edge 40.00              | float variable. It is ideal for creating a                                             |
| types::ConstFloat<br>Out     | 40.00 |                                 | digital event from a real-world analog                                                 |
| Out                          |       | Limiter 🖾                       | input. Its output is Boolean.                                                          |
| ConstF1<br>types::ConstFloat |       | Out 60.00<br>In 64.91           | The Limiter component restricts the                                                    |
| Out 60.00                    | 60.00 | Low Lmt 40.00<br>High Lmt 60.00 | range of a float variable by outputting a<br>float that does not exceed the            |
|                              |       |                                 |                                                                                        |
|                              |       |                                 | configurable low-limit (Low Lmt) or high-<br>limit (High Lmt). The Limiter only limits |
|                              |       |                                 | the range of its output and does not                                                   |
|                              |       |                                 | scale the input float.                                                                 |

CONTEMPORARY ONTROLS

### Handling Non-Linear Signals

| IRamp Monthead IRamp             | 12F<br>types::I2F               |                          | Lineari<br>func::Linearize | <b>Ev</b>                                |
|----------------------------------|---------------------------------|--------------------------|----------------------------|------------------------------------------|
| Out 9                            | In                              | 9                        | Out                        | 91.00                                    |
|                                  | Out                             | 9.00                     | In                         | 9.00                                     |
|                                  |                                 |                          |                            | float input and creates a piece-wise     |
| linear represe                   | ntation of a n                  | on-linear                | input (such                | as a thermistor) or it can create a non- |
| linear represe                   | ntation of a n                  | on-linear                | input (such                |                                          |
| linear represe<br>linear piece-w | ntation of a n<br>ise represent | on-linear<br>tation of a | input (such<br>linear inpu | as a thermistor) or it can create a non- |

| 0 🔘 Me   | eta Group [1] » |                                                                                                       |
|----------|-----------------|-------------------------------------------------------------------------------------------------------|
| <b>0</b> | ut 56.50        |                                                                                                       |
| 🗆 🔘 In   | 7.50            |                                                                                                       |
| 🗆 🔘 🗙    | 0.00            | In this example we will do the reverse of what is<br>commonly done. We will use a linear input and    |
| 🗆 🔘 Y0   | 0.00            | create a non-linear output that approximates the                                                      |
| 🗆 🔘 🛛    | 1.00            | equation Y=X*X over the range of X values from 0                                                      |
| 🗆 🔘 Y1   | 1.00            | to 9. We need to input corresponding values of Y                                                      |
| 🗆 🔘 X2   | 2.00            | that obey the desired equation. To make it easy<br>we will use integer values but this is not a       |
| 🗆 🔘 Y2   | 4.00            | restriction. For example, the square of 4 is 16 and                                                   |
| 🗆 🔘 X3   | 3.00            | the square of 5 is 25. We enter the X values as an                                                    |
| 🗆 🔘 Y3   | 9.00            | independent variable and then the Y value as the                                                      |
| 🗆 🔘 X4   | 4.00            | dependent variable. We need to be careful that<br>the input does not exceed 9 in this example         |
| 🗆 🔘 Y4   | 16.00           | because we do not define a corresponding value                                                        |
| 🗆 🔘 X5   | 5.00            | for Y above 9.                                                                                        |
| 🗆 🔘 Y5   | 25.00           | You can test the interpolation by entering a value                                                    |
| 🗆 🔘 X6   | 6.00            | for X in the In slot assuming no link is connected                                                    |
| 🗆 🔘 Y6   | 36.00           | to the linearize component. This is done here.                                                        |
| 🗆 🔘 X7   | 7.00            | Notice that the result is 56.50 for an input value<br>of 7.5. The correct value would have been 56.25 |
| 🗆 🔘 Y7   | 49.00           | which is very close.                                                                                  |
| 🗆 🔘 X8   | 8.00            | ]                                                                                                     |
| 🗆 🔘 Y8   | 64.00           |                                                                                                       |
| 🗆 🔘 X9   | 9.00            |                                                                                                       |
| 🗆 🔘 Y9   | 81.00           |                                                                                                       |

### Simple Set-Reset Flip Flop — Bi-Stable Multivibrator

| ConstBo<br>types::ConstBool                                       | SRLatch  func::SRLatch        | The SRLatch appears to be straight-<br>forward logic block. The output would                      |
|-------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------|
|                                                                   | Out true<br>S true<br>R false | become true if the set (S) pin is high<br>and would go low if the reset (R) pin                   |
| ConstB1<br>types::ConstBool<br>Out false                          |                               | goes high. However, both the S and R<br>pins are positive leading-edge                            |
| On the rare condition th                                          | at both C and D               | sensitive. Regardless of their steady-<br>state condition, the output (Out) will                  |
| transition from false-to-<br>same logic scan, R will ta           | true during the               | only change on the false-to-true<br>transition of either input. If this occurs                    |
| because its state is teste<br>logic and therefor the of<br>false. | ed last in the                | on the S pin the output goes high and<br>will remain high until the R pin does its<br>transition. |

#### The Loop Component — Basic PID Controller

| ConstFl<br>types::ConstFloat<br>Out       | 72.00          | LP (<br>func::LP )<br>Sp 72.00 | The LP or loop component is one of the<br>most complex components. It can provide |
|-------------------------------------------|----------------|--------------------------------|-----------------------------------------------------------------------------------|
| SpaceTp                                   |                | Cv 72.500<br>Out 0.50          | three modes of control P-proportional, I-<br>integral, and D-derivative. In this  |
| SpaceTp<br>types::WriteFloat<br>In<br>Out | 72.50<br>72.50 |                                | example we will assume a temperature<br>loop with a setpoint (Sp) of 72 degrees   |
|                                           |                |                                | and a controlled variable (Cv) currently at 72.5 degrees which is the space       |
|                                           |                |                                | temperature which we want to control.                                             |

| st be configured true otherwise there<br>ol.<br>roportional gain which defaults to 1.<br>It the error signal is Cv-Sp or 0.5. The<br>plied by the proportional gain of 1<br>utput of 0.50. If the Ki and Kd factors<br>heir contributions are also multiplied<br>portional gain factor. Ki is the integral<br>ts of resets per minute. It is<br>by the error signal. Kd is the |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| the error signal is Cv-Sp or 0.5. The<br>plied by the proportional gain of 1<br>utput of 0.50. If the Ki and Kd factors<br>heir contributions are also multiplied<br>portional gain factor. Ki is the integral<br>ts of resets per minute. It is<br>by the error signal. Kd is the                                                                                             |
| gain in seconds and it is also<br>by the error signal.                                                                                                                                                                                                                                                                                                                         |
| ax are the limits of the output signal.                                                                                                                                                                                                                                                                                                                                        |
| e set to any value. Bias can offset the<br>ardless of the error. Max Delta sets<br>change of the output within the<br>its. This will slow the output swing.                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                |

AN-SEDONA01-BA1

#### Linear Sequencer — Bar-Graph Representation of a Float

LSeq hvac::LSeq 2 The linear sequencer (LSeq) 78.00 In provides a digital representation of Delta 10.00 an input float similar in operation D On true Out1 to a bar graph on audio equipment. Out2 true It is easier to understand its IRamp func::IRamp 12F Out3 true ~ Э types::I2F Out4 true operation using an integer input. In Out Out 78 78.00 Out5 true There are 16 possible Boolean Out6 Out7 true true false false false false false false false outputs plus one overflow (Ovfl) Out8 flag. The input ramp provides a Out9 Out10 triangle wave from 0 to 100. The Out11 sequencer was configured for a 0 Out12 Out13 minimum input and a 100 maximum Out14 input. The maximum number of false false Out15 Out16 Ovfl outputs was configured for 9 yielding a Delta of 10.

| 🗆 🔘 Meta     | Group [1] » |           |                                                                                     |
|--------------|-------------|-----------|-------------------------------------------------------------------------------------|
| 🗆 🔘 In       | 60.00       |           |                                                                                     |
| 🗆 🔘 In Min   | 0.00        |           |                                                                                     |
| 🗆 🔘 In Max   | 100.00      |           |                                                                                     |
| 🗆 🔘 Num Outs | 9           | [1 - 16]  | The range of the linear sequencer is                                                |
| 🗆 🔘 Delta    | 10.00       |           | configured using In Min at the low-end                                              |
| D On         | 6           | [0 - 255] | and In Max at the high-end. Selecting the<br>number of outputs (Num Outs)           |
| 🗆 🔘 Out1     | 🔘 true      |           | determines the difference (Delta)                                                   |
| 🗆 🔘 Out2     | 🔘 true      |           | between successive outputs turning on.<br>In this case the range is 100 and the     |
| 🗆 🔘 Out3     | 🔘 true      |           | number of desired outputs is 9. Divide 100                                          |
| 🗆 🔘 Out4     | 🔘 true      |           | by Num Outs + 1 and you will get a Delta of                                         |
| 🗆 🔘 Out5     | 🔘 true      |           | 10.                                                                                 |
| 🗆 🔘 Out6     | 🔘 true      |           | You will notice that the input (In) is at 60                                        |
| 🗆 🔘 Out7     | false       |           | and D On is indicating that six outputs are                                         |
| 🗆 🔘 Out8     | ight false  |           | on. With an input between 0-9, there are                                            |
| 🗆 🔘 Out9     | ) false     |           | no outputs on but once you hit a decade<br>such as 10, 20 on up to 90, successive   |
| 0ut10        | ) false     |           | outputs will come on. At the maximum of                                             |
| 🗆 🔘 Out11    | false       |           | 100, 9 lights will be on. If the input                                              |
| 0 Out12      | ) false     |           | exceeds the maximum intended, the                                                   |
| <br>() Out13 | false       |           | overflow flag will set but the number of<br>outputs will remain as specified by Num |
| □ () Out14   | false       |           | Outs.                                                                               |
| 0 Out15      | false       |           |                                                                                     |
| 🗆 🔘 Out16    | ) false     |           |                                                                                     |
| 🗆 🔘 Ovfl     | ) false     |           |                                                                                     |

### Reheat Sequencer — Four Staged Outputs from a Float Input

| Ramp<br>func::Ramp |      | ReheatS<br>hvac::ReheatSeq<br>Out1 true<br>Out2 true<br>Out3 false<br>Out4 false | The reheat sequencer (ReheatS) provides<br>a linear sequence of up to four outputs<br>based upon the input float (In). The<br>threshold for the four outputs can be |
|--------------------|------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Out                | 2.43 | In 2.40<br>D On 2                                                                | configured for increasing values of the<br>input. As the input increases to each<br>threshold, the corresponding output will                                        |
|                    |      |                                                                                  | go on. As the input decreases below the threshold, the corresponding output will                                                                                    |
|                    |      |                                                                                  | remain on until the Hysteresis value is<br>exceeded.                                                                                                                |

| ReheatS (hvac:: | ReheatSeq)  |                                                                                           |
|-----------------|-------------|-------------------------------------------------------------------------------------------|
| 🗆 🔘 Meta        | Group [1] » |                                                                                           |
| 🗆 🔘 Out1        | 🔘 true      | Enable must to true otherwise the outputs                                                 |
| 🗆 🔘 Out2        | 🔘 true      | to be false.                                                                              |
| 🗆 🔘 Out3        | 🔘 true      | There are four possible threshold settings                                                |
| 🗆 🔘 Out4        | false       | corresponding to four outputs. As the                                                     |
| 🗆 🔘 In          | 2.93        | input signal increases to each threshold its<br>corresponding output goes on and stays on |
| 🗆 🔘 Enable      | 🔘 true 🔻    | until the input drops below the threshold                                                 |
| 🗆 🔘 D On        | 3 [0 - 255] | plus the value of the hysteresis.                                                         |
| 🗆 🔘 Hysteresis  | 0.25        |                                                                                           |
| 🗆 🔘 Threshold 1 | 1.00        | The input signal is decreasing but it has not<br>exceeded the amount of the threshold so  |
| 🗆 🔘 Threshold2  | 2.00        | output 3 (Out3) remains set. Once the                                                     |
| 🗆 🔘 Threshold3  | 3.00        | signal is below 2.75, output 3 will go off.                                               |
| 🗆 🔘 Threshold4  | 4.00        |                                                                                           |

### **Reset — Scaling a Float Input between Two Limits**

| Ramp 💦            |       | Reset  hvac::Reset |             | The reset component (Reset) will<br>scale the output linearly between |
|-------------------|-------|--------------------|-------------|-----------------------------------------------------------------------|
| func::Ramp<br>Out | 28.67 | Out                | 83.61 28.67 | two limits. The input range must be                                   |
| OUL               | 20.0/ | In                 | 20.0/       | configured by setting In Min and In                                   |
|                   |       |                    |             | Max. The corresponding output for                                     |
|                   |       |                    |             | those two points must be                                              |
|                   |       |                    |             | configured as Out Min and Out Max.                                    |
|                   |       |                    |             | If the input signal exceeds the                                       |
|                   |       |                    |             | defined input range, the output will                                  |
|                   |       |                    |             | be clamped to one of the two<br>output limits.                        |

| Reset (hvac:: | Reset)      |                                                                                                                    |
|---------------|-------------|--------------------------------------------------------------------------------------------------------------------|
| 🗆 🔘 Meta      | Group [1] » |                                                                                                                    |
| 🗆 🔘 Out       | 81.22       | In this example we are converting degrees Celsius to                                                               |
| 🗆 🔘 In        | 27.34       | degrees Fahrenheit within the 0-100 degree Celsius                                                                 |
| 🗆 🔘 In Min    | 0.00        | range. Therefore we set Out Min and Out Max to the                                                                 |
| 🗆 🔘 In Max    | 100.00      | corresponding Fahrenheit values. All Celsius input values<br>between these two limits will be interpolated thereby |
| 🗆 🔘 Out Min   | 32.00       | providing the correct Fahrenheit values.                                                                           |
| 🗆 🔘 Out Max   | 212.00      |                                                                                                                    |

#### **Tstat** — **Basic On/Off Temperature Controller**

| ConstFl<br>types::Const              |             | Tstat                       | D                              | The Tstat is an on/off temperature                                                    |
|--------------------------------------|-------------|-----------------------------|--------------------------------|---------------------------------------------------------------------------------------|
| Out                                  | 72.00       | hvac::Tstat                 |                                | controller for either heating or cooling.                                             |
|                                      |             | Diff<br>Is Heating<br>Sp    | 1.00<br>true<br>72.00<br>71.40 | For heating configure the Is Heating bit<br>to true. The deadband can be set by       |
| SpaceTp<br>types::Write<br>In<br>Out | Float 71.40 | Cv<br>Out<br>Raise<br>Lower | 1.40<br>true<br>false          | the Diff value. If the controlled variable<br>(Cv) deviates from the setpoint (Sp) by |
|                                      | /1.+0       | Covier                      | Taise                          | half the Diff value, the output (Out) will<br>become true and stay set until Cv       |
|                                      |             |                             |                                | deviates from the setpoint by a like<br>amount in the other direction. In this        |
|                                      |             |                             |                                | way Diff also provides hysteresis. The<br>Raise and Lower outputs are a function      |
|                                      |             |                             |                                | of the Is Heating setting. If Is Heating is true, Out=Lower, otherwise Out= Raise.    |

#### Real-Time Clock and Scheduling

| datetimeStd::DateTimeSe |              |
|-------------------------|--------------|
| Nanos 42663416          | 400000000 ns |
| Hour                    | 21           |
| Minute                  | 29           |
| Second                  | 24           |
| Year                    | 2013         |
| Month                   | 7            |
| Day                     | 8            |
| Day Of Week             | 1            |
|                         |              |
|                         |              |
| DailySc                 | 0            |
| basicSchedule::DailySch | eduleBool    |
| Out                     | false        |
|                         |              |
|                         |              |
|                         |              |
| DailyS1                 |              |
| basicSchedule::DailySch | edulerioat   |
| Out                     | 0.00         |
|                         |              |
|                         |              |
|                         |              |
|                         |              |

The DateTim component provides real-time information. There is no need to place it on the wiresheet. However, if you need specific information from the component for driving logic, you can connect to the various integer outputs such as Hour, Minute and Second. There are two schedule components which have different output types. One is for Boolean and the other for float. There is no need to connect the DateTim component to either of the schedulers. Each scheduler can handle two events over the 24 hour period by configuring the time and duration of each event. The output of each schedule will change with each event. If more events or more outputs are needed, multiple schedulers can be placed on the wiresheet.

| DailyS1 (bas | icSchedule::DailyScheduleFloat) |                                                                            |
|--------------|---------------------------------|----------------------------------------------------------------------------|
| 🗆 🔘 Meta     | Group [1] »                     | Configuration of the two scheduler<br>components is similar. For the float |
| 🗆 🔘 Start1   | 12:00 AM 🗧                      | version, Val1 and Val2 need to be                                          |
| 🗆 🔘 Dur 1    | 00000h 00m 🖨 [0ms - 1day]       | specified along with the start times                                       |
| 🗆 🔘 Start2   | 12:00 AM                        | (Start1 and Start2) and the durations                                      |
| 🗆 🔘 Dur2     | 00000h 00m 🚔 [0ms - 1day]       | (Dur1 and Dur2). The output (Out)                                          |
| 🗆 🔘 Val1     | 0.00                            | will assert either Val1 or Val2 during                                     |
| 🗆 🔘 Val2     | 0.00                            | the scheduled times. If neither are<br>programmed, the Def Val should be   |
| 🗆 🔘 Def Val  | 0.00                            | configured.                                                                |
| 🗆 🔘 Out      | 0.00                            |                                                                            |

### **Priority Arrays**

|                               |                                      | Priority array (Priorit) components exist                                       |
|-------------------------------|--------------------------------------|---------------------------------------------------------------------------------|
| ConstBo<br>types::ConstBool   | Priorit<br>pricomp::PrioritizedBool  | for Boolean, float and integer variables.                                       |
| Out null                      | In10 nul                             | Up to 16 levels of priority from In1 to                                         |
|                               | In16 true                            | In16 can be assigned. In1 has the                                               |
|                               | Out true                             |                                                                                 |
| ConstB1<br>types::ConstBool   |                                      | highest priority and In16 the lowest.<br>With few exceptions, all can be pinned |
| Out true                      |                                      | out. If a priority level is not assigned it                                     |
|                               |                                      | is marked as a Null and therefor                                                |
| ConstFl (0)                   | Priori1<br>pricomp::PrioritizedFloat | ignored. If a Null is inputted to the                                           |
| Out 5.00                      | In10 5.00                            | priority array as shown in the top-most                                         |
|                               | In16 6.00                            |                                                                                 |
|                               | Out 5.00                             | example, the priority array will ignore it                                      |
| ConstF1 (in types::ConstFloat |                                      | and choose the next in line input. The                                          |
| Out 6.00                      |                                      | Boolean version of the priority array has                                       |
|                               |                                      | two timer settings - one for minimum                                            |
|                               |                                      | active time and minimum inactive time.                                          |
| ConstIn O                     | Priori2<br>pricomp::PrioritizedInt   | If the highest priority device changes                                          |
| Out 25                        | In5 1                                | NT 201 201 201 201 - 100 201 201 201 201 201 201 201 201 201                    |
| · ·                           | In10 25                              | from false to true and then back to                                             |
| d d                           | In16 35                              | false, the priority component will                                              |
| ConstI1 👩                     | Out 1                                |                                                                                 |
| types::ConstInt               |                                      | maintain the event for the configured                                           |
| Out 35                        |                                      | times.                                                                          |
|                               | There is a Fallback se               | tting in each array that can be specified.                                      |
| ConstI2 O<br>types::ConstInt  |                                      | out exists, the Fallback value is                                               |
| Out 1                         | transferred to the ou                | tput.                                                                           |
|                               | The Override Exp Tim                 | e guards against the possibility of an                                          |
|                               | indefinite override o                |                                                                                 |

| ~1                                |                            |                                                                                                                                                                                                        |  |
|-----------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Views<br>Actions                  | •                          | Emergency Set Active                                                                                                                                                                                   |  |
| Cut<br>Copy<br>Paste              | Ctrl+X<br>Ctrl+C<br>Ctrl+V | Emergency Set Inactive<br>Emergency Auto<br>Manual Set Active<br>Manual Set Inactive                                                                                                                   |  |
| Duplicate                         | Ctrl+D<br>Delete           | Manual Auto                                                                                                                                                                                            |  |
| Link Mark<br>Link From<br>Link To |                            | When you right-click on the priority component<br>and select actions you will have several choices fo<br>overriding the current priority selection made by<br>the component. The override choices vary |  |
| ⊡ Rename<br>St Reorder            | Ctrl+R                     | depending upon the type of variable supported by<br>the priority component. In this example, the<br>Priority Boolean was selected. Setting an override                                                 |  |
| Export                            |                            | using a tool is only temporary. Eventually, the                                                                                                                                                        |  |
| -⊫⇔ Pin Slots                     |                            | component will time out and revert to normal<br>priority selection.                                                                                                                                    |  |

#### **United States**

Contemporary Control Systems, Inc. 2431 Curtiss Street Downers Grove, IL 60515 USA

Tel: +1 630 963 7070 Fax:+1 630 963 0109

info@ccontrols.com www.ccontrols.com

#### China

Contemporary Controls (Suzhou) Co. Ltd 11 Huoju Road Science & Technology Industrial Park New District, Suzhou PR China 215009

Tel: +86 512 68095866 Fax: +86 512 68093760

info@ccontrols.com.cn www.ccontrols.asia

#### United Kingdom

Contemporary Controls Ltd 14 Bow Court Fletchworth Gate Coventry CV5 6SP United Kingdom

Tel: +44 (0)24 7641 3786 Fax:+44 (0)24 7641 3923

ccl.info@ccontrols.com www.ccontrols.eu

#### Germany

Contemporary Controls GmbH Fuggerstraße 1 B 04158 Leipzig Germany

Tel: +49 341 520359 0 Fax: +49 341 520359 16

ccg.info@ccontrols.com www.ccontrols.eu

