

We realize ideas

C Logline

Digital I/O Module MR-DIO4/2

1108331326

1. Description

The Modbus module with 4 digital inputs and 2 relay outputs is designed for local switching operations. It is suitable to receive for example light switches and window contacts in a room and to operate two light bands or to be used as sunblind control. It can also be used to control two motor driven fire dampers or for many other applications. We recommend to protect the relay contacts additionally by a RC-element or high inductive loads. The relays are provided with a manual control facility. Depending on the position of the jumper (below the faceplate) the inputs can be operated as contact and voltage inputs (A1, 24 V AC/DC; jumper J - A2) or with actuation to GND (A2; jumper J - A1. Inputs and outputs can be operated and scanned via a Modbus-Master. Setting of the slave address, bit rate and parity is done with the two address

switches (x1/x10) on the front. Possible settings are addresses 00 to 99 and bit rates 1200, 2400, 4800, 9600, 19200, 38400, 57600 und 115200 Bd.

The device does not participate in bus communication if the address is 00 (reserved for broadcast commands).

Communication with the master can be monitored with a watchdog timer. If master or communication fail the outputs are switched to their basic state (secure state) and the red LED is lighting. The timer restarts with each valid message addressed to the device. When defining the time constant it is necessary to take account of the baud rate, the number of slaves on the bus and the length of the messages per slave.

2. Declaration of Conformity

The device was tested according to the applicable standards. Conformity was proofed. The declaration of conformity is available at the manufacturer BTR NETCOM GmbH.

Notes Regarding Device Description

These instructions include indications for use and mounting of the device. In case of questions that cannot be answered with these instructions please consult supplier or manufacturer.

The indicated installation directions or rules are applicable to the Federal Republic of Germany. If the device is used in other countries it applies to the equipment installer or the user to meet the national directions.

Safety Instructions

Keep the applicable directions for industrial safety and prevention of accidents as well as the VDE rules.

Technicians and/or installers are informed that they have to electrically discharge themselves as prescribed before installation or maintenance of the devices.

Only qualified personnel shall do mounting and installation work with the devices, see section "qualified personnel".

The information of these instructions have to be read and understood by every person using this device.

Symbols

Warning of dangerous electrical voltage

Dange

means that non-observance may cause risk of life, grievous bodily harm or heavy material damage.

Qualified Personnel

Qualified personnel in the sense of these instructions are persons who are well versed in the use and installation of such devices and whose professional qualification meets the requirements of their work.

This includes for example:

- Qualification to connect the device according to the VDE specifications and the local regulations and a qualification to put this device into operation, to power it down or to activate it by respecting the internal directions.
- Knowledge of safety rules.
- Knowledge about application and use of the device within the equipment system etc.

3. Technical Data

Modbus Interface

Protocoll Modbus RTU
Transmission rate 1200 ... 115200 Bd

Transmission rate 1200 ... 115200 Bd (factory setting 19200 Bd Even)
Cabling RS485 two wire bus with voltage

RS485 two wire bus with voltage

Supply

Operating voltage range 20 ... 28 V AC/DC (SELV) Current consumption 200 mA (AC) / 75 mA (DC)

Relative duty cycle 100 %

Input

Voltage input 30 V AC/DC High-signal recognition >8 V AC/DC

Output

Output contacts 2 changeover contacts

Switching voltage max. 250 V AC

Continuous current max. 16 A / relay (80 A / 20 ms)

Total current for

all contacts 25

Housing

Dimensions WxHxD 2.0 x 2.8 x 3.0 in. (50 x 70 x 75 mm)

Weight 126 g

Mounting position any
Mounting standard rail TH35 per IEC 60715

Mounting
Mounting in series

Mounting in series the maximum quantity of modules without space connected in line is limited to 15 or to a maximum power consumption of

2 Amps (AC or DC) per connection to the power supply. For any similar block of additional modules a separate connection to the power supply is

mandatory.

Material

Housing Polyamide 6.6 V0
Terminal blocks Polyamide 6.6 V0
Cover plate Polycarbonate

Type of protection (IEC 60529)

Housing IP40
Terminal blocks IP20

Terminal blocks

Supply and bus

Wire diameter

4 pole terminal block max. AWG 16 (1,5 mm²) solid wireg max. AWG 18 (1,0 mm²) stranded wire

min. 0.3 mm up to max. 1.4 mm (terminal block and jumper plug are included to each packing unit)

Module connection

Input/Output max. AWG 12 (4.0 mm²) solid wire max. AWG 14 (2.5 mm²) stranded wire

Wire diameter min. 0.3 mm up to max 2.7 mm

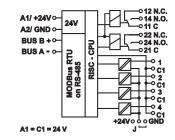
Temperature range

Operation -5 °C ... +55 °C Storage -20 °C ... +70 °C

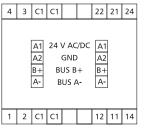
Protective circuitry polarity reversal protection of

operating voltage

polarity reversal protection of supply


and bus

Display


Operating and bus activity green LED Error indication red LED Status of the

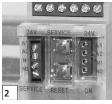
inputs & outputs yellow LED

4. Wiring Diagram

5. Connection Diagram

6. Mounting

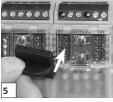
Power down the equipment


Mount the module on standard rail (TH35 per IEC 60715 in junction boxes and/or on distribution panels).

Installation

Electric installation and device termination shall be done by qualified persons only, by respecting all applicable specifications and regulations.

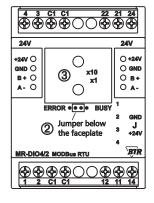
Plug in the terminal block for bus connection



Connect the cable for bus supply

Mounting in series

The module can be aligned without interspace. Use the jumper plug to connect bus and supply voltage when the modules are mounted in series.

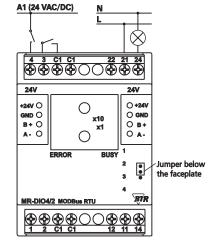

The maximum quantity of modules connected in line is limited to 15 or to a maximum power consumption of 2 Amps (AC or DC) per connection to the power supply. For any similar block of additional modules a separate connection to the power supply is mandatory.

7. Bit rate and Parity setting

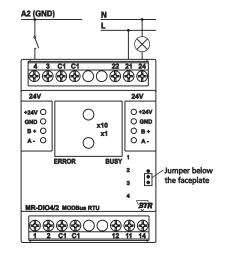
The bit rate and parity can be set in the programming mode when ajumper is plugged behind the front cover of the module. This jumper is removed in normal mode. A connection to the bus is not required during bit rate setting.

The bit rate of the modules can be set in the following way:

- 1. remove the front cover of the module;
- 2. plug a jumper to the two middle pins of the 4 pole header between the red and green LED (②);
- 3. set the desired parity and bit rate with the address switches (③) in accordance to the chart below.


- switch on the supply voltage of the module; it is now permanently saving the bit rate in an EEPROM;
- 5. switch off the supply voltage of the module;
- 6. remove the jumper from the header and place the front cover.

Switch x10	1	2	3					
Parity	even	odd	none					
Switch x1	1	2	3	4	5	6	7	8
Bitrate (Bit/s)	1200	2400	4800	9600	19200	38400	57600	115200


If the settings differ from the settings specified in the chart the factory setting applies.

Factory setting: 19200 Bd Even

8. Connection examples Connection examples 1 and 2

Connection example 3

9. Beschreibung der Software

9.1 I/O Commands

"01 (0x01) Read Coils"

Request

Valid Coil Starting Address	0 3
Valid Quantity of Outputs	1 4
Response	

Byte Count 1

Output Status Bit0 .. Bit3 (Bit 4 .. 7=0)

Bit	Information
0	0 = Status relay 1 off
	1 = Status relay 1 on
1	0 = Status relay 2 off
'	1 = Status relay 2 on
2	0 = relay 1 switched via bus
2	1 = relay 1 switched via manual control
2	0 = relay 2 switched via bus
3	1 = relay 2 switched via manual control

"02 (0x02) Read Discrete Inputs"

Request Valid Input Starting Address 0 .. 3 Valid Quantity of Inputs 1 .. 4

Response Byte Count 1

Byte Count	1
Input Status	Bit0 Bit3 (Bit $4 7 = 0$)

Information

1 = Status input closed 0 = Status input open

"05 (0x05) Write Single Coil"

Request

Valid Output Address 0 1

Valid Output Value 0x0000 or 0xFF00

Response

Echo of the request

"15 (0x0F) Write Multiple Coils"

Request

Valid Coil Starting Address	0 1
Valid Quantity of Outputs	1 2
Valid Byte Count	1

Output Value 0 or 1 in Bit0 .. Bit1

	Bit	Information
0	0 = Status relay 1 off	
	1 = Status relay 1 on	
Γ	_	0 = Status relay 2 off
'	1 = Status relay 2 on	

Response

Function Code, Starting Adress, Quantity of Outputs

Continuation Software description

"04 (0x04) Read Input Registers"

Request

Valid Register Starting Address 0 Valid Quantity of Registers

Response

Byte Count Values Register

Input Status Bit 0..3

"03 (0x03) Read Holding Registers"

Request

Valid Register Starting Address 0..1 or 66 Valid Quantity of Registers 2 or 1

Response

Function Code, Byte Count, Register Values Values Register 0:

Bit	Information					
0	0 = Status relay 1 off					
	1 = Status relay 1 on					
	0 = Status relay 2 off					
1	1 = Status relay 2 on					
2	0 = relay 1 switched via bus					
2	1 = relay 1 switched via manual control					
	0 = relay 2 switched via bus					
3	1 = relay 2 switched via manual control					

Values Register 1:

Bit	Information
0	0 = Initial state after Reset or communication control relay 1 off
	1 = Initial state after Reset or communication control relay 1
1	0 = Initial state after Reset or communication control relay 2 off
	1 = Initial state after Reset or communication control relay 2 on

Value Register 66

Time constant for communication monitoring.

Register Value = 0 (0x0000) there is no communication monitoring,

all other values are for communication monitoring with a solution of 10 ms

0x0000 to 0xFFFF => 0 to 655.35 seconds = 10.9 minutes

Continuation Software description

"06 (0x06) Write Single Register"

Request

Register Address 0 or 1 or 66

Bits 0 – 1 according to tables Register Value or the discribtion above

Response

Echo of the request

"16 (0x10) Write Multiple Registers"

Request

Valid Register Starting Address 0 or 1 Valid Quantity of Registers

Byte Count 2 x Quantity of registers Registers Value Quantity of registers x 2 Byte Bits 0 - 3 according to tables

Response

Function Code, Register Starting Address, Quantity of Registers

9.2 Bit rate setting with Modbus command

Parity and bit rate have the same value as when setting them by address switch.

If Parity or Bit has the value 0, no setting or storage is carried out. The register content is stored in the EEPROM.

"06 (0x06) Write Single Register"

Request

Valid Register Address

0x41 (65)

Valid Register Value 2 Bytes

15	14	13	12	11	10	9	8	7 6 5 4				3	2	1	0
0x53						Parity Bi			Bit	rate					

Bit 15-8: Magic-Number 0x53 = 83 as protection against accidental writing

The command will be further analysed only with this number.

Bit 7-4	1	2	3					
Parity	even	odd	none					
Bit 3-0	1	2	3	4	5	6	7	8
Bit rate	1200	2400	4800	9600	19200	38400	57600	115200

Response

Echo of Request

Example for a frame

Function

tample for a frame.			
Slave address	0x12	Setting of rotary switch (18)	

Register address Hi 0x00

Register address Lo 0x41 Bit rate and parity (65)

Write Single Register

Register contents Hi 0x53 Magic-Number

Register contents Lo 0x15 Parity Even, 19200 Baud

0x06

All devices can be switched simultaneously with a Broadcast command (Slave address 0x00) However, it is advised not to do so as this can cause problems:

- Devices from other manufacturers may have under this address a register for a different purpose that will then be operated in the wrong way.
- There is no feedback from the individual devices. Consequently the control cannot immediately recognize if the command was correctly received.

Continuation Software description

It is safer to address and switch each device individually.

The device will then answer with the old settings of parity and bit rate. Switching will take place only afterwards. However, the answer can get lost if the bus is disturbed.

When all devices are switched; it is advised to check communication. Any function of the device providing a feedback is suitable. If a single function is to be used being independent from the process periphery then the function "Diagnostic" sub-function "Return Query Data" is suitable, it returns the transferred data.

If bit rate and parity setting of a device are unknown it is possible to address the device successively with all combinations of bit rate and parity until the device answers. Try the most likely combinations first. Try the lower bit rates last as they take longer.

9.3 General Commands

"08 (0x08) Diagnostics"

Subfunction "0 (0x0000) Return Query Data"

Data Field Any

Response: Echo of Request

Subfunction "1 (0x0001) Restart Communication Option"

Data Field 0x0000 oder 0xFF00

Response: Echo of Request

Action: Clears all Error Counters, Restarts node

Subfunction "4 (0x0004) Force Listen Only Mode"

Data Field 0x0000

No Response

Action: No response until Node Reset or Function Code 08 Subcode 01

Subfunction "10 (0x000A) Clear Counters"

Data Field 0x0000

Response: Echo of Request Action: Clears all Error Counters

Subfunction "11 (0x000B) Return Bus Message Count"

Data Field 0x0000

Response: Quantity of messages that the remote device has detected on the communications system since its last restart, clear counters operation, or power-up.

Subfunction "12 (0x000C) Return Bus Communication Error Count"

Data Field 0x0000

Response: Quantity of errors encountered by the remote device since its last restart, clear counters operation, or power-up. (CRC, Length <3, Parity, Framing)

Subfunction "13 (0x000D) Return Bus Exception Error Count"

Data Field 0x0000

Response: Quantity of MODBUS exception responses returned by the remote device since its last restart, clear counters operation, or power-up

Subfunction "14 (0x000E) Return Slave Message Count"

Data Field 0x0000

Response: quantity of messages addressed to the remote device, or broadcast, that the remote device has processed since its last restart, clear counters operation, or power-up.

Subfunction "15 (0x000F) Return Slave No Response Count"

Data Field 0x0000

Response: Quantity of messages addressed to the remote device for which it has returned no response (neither a normal response nor an exception response), since its last restart, clear counters operation, or power-up.

Continuation Software description

"43 /14 (0x2B / 0x0E) Read Device Identification"

Obiect Value

43 / 14 (0x2B / 0x0E) Read Device Identification		
Request		
Read Device ID code:	0x01	
Object ID 0x00		
Response		
Device ID code	0x01	
Conformity level	0x01	
More follows	0x00	
Next object ID	0x00	
Number of objects	0x03	
Object ID 0x00		
Object Length	0x03	
Object Value	"BTR"	
Object ID 0x01		
Object Length	0x09	
Object Value	"MR-DIO4/2"	
Object ID 0x02		
Object Length	0x04	

"V1.0"