
Understanding Sedona Core
Components using the
BAScontrol Toolset

• Contemporary Controls has developed the BAScontrol Toolset, a free set of
Sedona tools operating on a Windows PC, which includes

• BASemulator – a utility used to emulate controller operation on a Windows PC.
• Sedona Application Editor (SAE) – an editing tool used to create function block (component)

wiresheet applications in the Sedona environment.
• BASbackup – a project utility which provides a convenient way of storing/restoring and

replicating real or emulated controller settings and configurations, as well as Sedona
wiresheet applications.

• For an overview of this toolset, refer to “Introduction to the BAScontrol Toolset.”
• This presentation addresses how to use SAE to place Sedona components that are

deployed in kits onto a wiresheet and then configured and linked with other
components to create applications.

• The following examples demonstrate using this toolset with the BASemulator;
however, these examples can be implemented on a real Sedona controller.

2

3

From SAE:
1. Click the “Open Connection” icon on

the toolbar.
2. Use address 127.0.0.1 to connect,

unless you specified a different
address when you launched the
BASemulator. This address is always
available in the “Host” drop-down
selection and cannot be deleted.
This is the default address for the
BASemulator.

3. Enter the Username and Password.
The default credentials are “admin”
for both Username and Password.

4. Click “OK” to connect.

1

2 3

4

4

1
Navigation Pane

Kits Pane

Wiresheet

Properties Pane

The Navigation, Kits
and Properties Panes

can be hidden or
displayed using the

left-most icon on the
tool bar.

Components are typically sorted by
function and deployed in kits.

The components discussed in this
presentation can be found in one of the
core kits shown on the right that come
installed with every Sedona controller.

5

Kits Pane

Hvac
components

6

• Save to Controller from the SAE
• Saves a Sedona binary application file (app.sab.target) to an emulator or a real controller. A

SAB file is only a machine-readable executable file.
• Save to PC/Load from PC from the SAE

• Saves a Sedona source application file (app.sax) to your PC. A SAX file (also referred to as an
application or App file) is human readable. When saving, you are required to provide a name
for your file. Similarly, “Load from PC” uploads a SAX file from your PC into SAE.

• Backup/Restore from BASbackup
• Saves configuration files specific to the BAScontrol, BASpi, BASioT, or RTU controller used,

including all the non-Sedona configuration data, such as web page settings and IP address
settings, to a single BAScontrol project file. When saving, you are required to provide a name
for your file. The “Restore” function allows you to copy (clone) the project to a real or
emulated controller.

For an more information on saving your application and project, and the
BAScontrol Toolset, refer to “Introduction to the BAScontrol Toolset.”

7

Boolean has true/false

Floats have a decimal point

Integers have no decimal point

These are constant components that can be configured. However, they
must be saved, or the settings will be lost.

Notice the format of the
component output:

8

You can set the value of the constant
by right-clicking on the component and
the selecting Actions. For the
ConstBool components, your choices
are True, False or Null. Null is seldom
used.

9

In a similar manner, there are write components for
each variable type. Unlike the constant components,
these write components have an input slot. The value
of the input will be saved if the application program
is saved. Other than the input slot difference, the
constant components and the write components
function the same.

10

Float-to-Integer and Integer-to-Float components exist. Notice that
when we converted from a float to an integer, the Float-to-Integer
component truncated the original value during conversion.

Although it appears that an Integer-to-Float conversion created a
much higher accuracy of the original value, this is not the case. The
ability to convert variable types is necessary because not all Sedona
components exist for each variable type.

You can also convert a float to a binary using the Float-to-Binary
component. However, notice that the resulting 0000 0000 0000
0111 binary representation is actually a decimal 7 and again the
original float value was truncated.

There are no Integer-to-Binary components, but this could be
accommodated by using an Integer-to-Float ahead of the F2B
component.

11

In this example, we will begin with a float
with a value of 48138.7 and convert it to
binary using a Float-to-Binary
component, and then immediately
convert it back into a float using a
Binary-to-Float component.

Notice the recovered float values are
truncated from their original value.

12

We increased the float value to 75000, but
this time we have different answers.
Because we are only doing a 16-bit
conversion, we can only count up to 65535.
Notice that the Ovrf pin is true, meaning
there was a counter overflow. The Ovrf pin
means that a value of 65536 or higher was
detected. The remaining counter value,
called the residue, represents a Modulo-
65536 result of 9464. If you subtract 65536
from 75000, you will get 9464. It is
important to monitor the Ovrf flag when
doing float to binary conversion.

13

There are two Boolean variables A and B which
are set to be false. Both feed a Not component
that is usually called an inverter because it
changes the initial variable to the opposite state,
which it true. Going into another inverter changes
the state back to the original states of A and B.

Variable A is now set to be true. Notice in the
second panel the output of the first inverter
changes the value of A to a false, while the
second inverter restores the state of A back to
true.

A Boolean can have either of two states – true or false.
A true can be referred to as a logic 1 and a false as a logic 0.

14

The AND component if frequently called an AND gate.
If A is false and B is false, then the output is false.

For an AND gate, If A is true and B is false,
then the output is false.

For an AND gate, If A is false and B is true,
then the output is false.

For an AND gate, If A is true and B is true,
then the output is true.

15

The OR component if frequently called an OR gate.
If A is false and B is false, then the output is false.

For an OR gate, If A is true and B is false,
then the output is true.

For an OR gate, If A is false and B is true,
then the output is true.

For an OR gate, If A is true and B is true,
then the output is true.

16

An Exclusive OR is very similar to an OR
except for the condition when both
inputs are true. In this case, the output
is false. An XOR solves the problem of
A or B, but not both.

17

Four-input OR gates
operate the same
allowing more variables
to be added to the logic.

With OR gates, unused
inputs can be left
unconnected because
unused inputs default to
false.

Notice that two-input OR gates can be used with
three variables by cascading two-input OR gates.

18

Four-input AND gates
exists, but unused inputs
must be accommodated
by creating a Logic1
constant that is tied to all
unused AND gate inputs,
otherwise the AND gate
outputs would be
permanently disabled.

Cascading AND gates are
also a possibility when
using more than two
variables.

19

Here is another way of handling an unused
input when three variables are connected
to a four-input AND gate. Attach the
unused input to one of the variables. It
does not matter which one is used.

20

A two-binary selector switch is used to
enable one variable over another. If the
S1 slot is true, then the value at In2 is
passed to the output of the switch. If S1
is false, then In1 is passed to the output.

21

Similar in operation to the binary switch (BSW) is the analog
switch (ASW). Instead of Boolean variables, the inputs are
floats, but the selector (S1) is a Boolean variable. With S1
set to true, the ASW output selects input 2 (In2), otherwise
Input 1 (In1) is selected. Therefore, the ASW selects one of
two input float options.

The four-input analog switch (ASW4) is slightly different.
There are four float inputs instead of two as with the ASW.
The selector slot (Sel) is actually an integer and not a
Boolean, thereby allowing the selection of up to four float
inputs. Also, the selection process begins at a particular
integer value (StartsAt).

In this example, the StartsAt slot has a value of 0, meaning
that input 1 (In1) is selected if Sel is 0. Since Sel is 2, the
third input (In3) is selected.

22

The integer switch (ISW) is much like the
BSW and ASW. The selector is a Boolean,
but the inputs are integers. The output
remains an integer. The logic is the same.
If the selector (S1) is true, then the output
follows In2, otherwise it follows In1.

23

The de-multiplexer (DemuxI2) operates on
integer values and provides a linear selection of
the outputs based upon the value of the input. If
the input is 0, the first output (Out1) is set to
true. If the input is 2, the third output (Out3) is
set to true.

The analog de-multiplexer has only one input (In)
one selector (S1), and two outputs. When the S1
is false, Out1 reflects the input. When S1 is true,
Out1 will reflect the input just before the selector
changed state, and Out2 will reflect the
instantaneous value of the input. This component
can be treated as a sample-and-hold detector.

24

The addition (Add)
components are straight
forward. You can
cascade two-input Add
components, or you can
use a four-input Add
component. All inputs
and outputs are floats.

25

The subtract (Sub)
components are also
easy to work with but
notice that cascading
components do not
yield the same results.
The first input (In1) is
the minuend, and all
other inputs (In2, In3,
In4) are subtrahends
leading to outputs
which represent the
difference.

26

Similar to addition, float
variables can be
multiplied either by
cascading multiply (Mul)
components or by using
a single larger multiplier
component. All inputs
and outputs are floats.

27

Division is also straight forward.
Input 1 (In1) is the dividend, input 2
(In2) is the divisor, and the output
(Out) is the quotient. Dividing by zero
will result in the pin Div0 being set to
true.

28

The Max component output (Out)
reflects the maximum values of the two
input floats (In1, In2), while the Min
component reflects the minimum value
of the two inputs.

29

The MinMax component is slightly
more complex. There is only one input
and two outputs. If R is held in the true
state, the two outputs simply reflect
the input state. If R if false, the MinOut
captures the lowest value of the input,
while MaxOut captures the maximum
of the input. When connecting the
component for the first time you
should reset the component.

To demonstrate this operation, an IRamp was
configured to generate a triangle wave with a
minimum value of 4 and a maximum value of 8.
The MinMax component captured the limits.
Notice the need for an Integer-to-Float converter.

30

Using the Round component, you can
round-off the value of a float to the
closest integer value, but the output
will remain a float.

Using the Neg component, you can
append a minus sign to a float with the
output remaining a float.

The FloatOf component appends an
offset value to the output. It is not
necessary to use a constant component
for establishing the offset amount. The
offset amount can be configured within
the FloatOf component.

31

The Avg10 components averages the last ten input values and sends the result to
the output. To demonstrate this, an IRamp is configured to create a triangle wave
with a minimum value of 0 and a maximum value of 10. Increments are set to 1.
When the IRamp reaches 10, the Avg10 component would have averaged 10, 9, 8,
7, 6, 5, 4, 3, 2, 1 for a value of 5, which appears in the output.

32

In this example, three averaging
components are compared. The
Avg10 averages over ten samples,
but the data must change to
trigger a new sample. The AvgN
component can be configured for
the number of samples, but it
samples every scan and not just on
a change in value. The TimeAvg
averages over a fixed period of
time which is configurable. The
output does not change until all
samples are obtained.

33

The DlyOn component is an on-delay timer which
begins timing on the false to true transition of the
input. Once the time (as shown is the Hold slot) goes
to 0, the output will become true. This delay time is
configurable. In this example, the delay timer is still
timing after the input when true 4.8 seconds ago.

The Dlyoff component operates the same except it is
triggered by a true to false transition of the input.

34

In this example, the input to the two timers
made a true to false transition six seconds
ago. The DlyOn components had
immediately transitioned from true to false
with the input, but the DlyOff timer is still
timing. In another four seconds its output
will become false.

35

The timer component will count down from
a predetermined amount when the Run
input is true. A constant integer component
was used to set the time, although the Timer
component can be internally configured. The
output will remain true during timing and
transition false upon completion or if the
Run input goes false. To begin a new timing
period, the Run input must be cycled.

36

The OneShot provides a single pulse of determined value
upon the false to true transition of the input signal. The
output immediately goes true on its input’s false to true
transition, and then returns to false when timing is
complete. The PulseWidth can be configured or externally
programmed as shown. A retriggerable one-shot will renew
timing if the input transitions from true to false to true
during the timing period. A non-retriggerable will not.
Notice that the PulseWidth is a float.

The Boolean-to-Pulse (B2P) converter is actually a very
simple single-shot in that it outputs a true for only one scan
time when its input goes from false to true. There are no
time settings. It is used when a pulse is required after
detection of an event instead of a logic level.

37

The IRamp provides a triangular output
ranging from Min to Max with increments of
Delta. These paraments can be configured or
programmed as shown. The time increment
must be configured having the units of
seconds. Notice that all the configurable
settings are integers, as is the output.

38

The Ramp is similar to the IRamp, but
the Ramp has mostly float settings and
a float output. The output of the Ramp
can be configured or programmed for
either a sawtooth or triangle wave.
Increasing the period slows down the
speed of the Ramp within the limits of
Min and Max. Notice that although the
Period is a float, the input to Period
will be rounded to the nearest integer.

39

The Comparator component (Cmpr) compares the
X input to that of the Y input. If X is less that Y, then
the Xly output is true. If X equals Y, then Xey is
true. If X is greater than Y, then Xgy is true. Both
inputs are floats, and the outputs are Booleans. In
this example, the output of the Ramp is compared
to that of a constant. Using the default values of
the Ramp, the input X varies as a triangle between
0 and 100 every 10 seconds. You can watch how
the comparator outputs change over this range.

40

The TickToc component provides a convenient clock from 1 to 10 pulses per
second. However, because the controller scan time and other processing
overhead, it is recommended to use its default value of 1 second. More
accurate timing is available from a real-time clock.

The Freq components can provide output values in pulses-per-second (Pps)
or pulses-per-minute (Ppm). Because of the low-speed nature of these two
components, the Ppm calculation will probably be the most useful.

41

There are two counters. Count is an up/down counter
with an integer output. It must be enabled to count. It
can be reset to 0 or preset.

UpDn is an up/down counter with a programable
direction input (C Dwn) which can also be configured.
Although counters are inherently integer devices, the
output of this component is a float. In this example, a
limit of 100 has been programmed. Once the limit is
hit, the overflow bit (Ovr) will be set. If HoldAtLimit is
true, the counter will not go past 100. If it is false, the
counter will continue to count past the limit, but the
overflow bit will remain set. Resetting the counter
returns the component to the start position while
clearing the counter and overflow bit.

42

The hysteresis component (Hystere) has
separate rising-edge and falling-edge trip
points when setting a trigger on a float
variable. It is ideal for creating a digital event
from a real-world analog input. Its output is
Boolean.

The Limiter component restricts the range of
a float variable by outputting a float that does
not exceed the configurable low-limit
(LowLmt) or high-limit (HighLmt). The Limiter
only limits the range of its output and does
not scale the input float.

43

The Linearize component (Lineari)
operates on a float input and creates a
piece-wise linear representation of a
non-linear input (such as a
thermistor), or it can create a non-
linear piece-wise representation of a
linear input. There is complete
flexibility in the defining the ten X,Y
coordinates along the output curve.

The component determines the
approximate output between the ten
coordinates using linear interpolation.

44

In this example, we will do the reverse of what is commonly done. We will
use a linear input and create a non-linear output that approximates the
equation Y=X*X over the range of X values from 0 to 9. We need to input
corresponding values of Y that obey the desired equation. To make it easy we
will use integer values, but this is not a restriction. For example, the square
of 4 is 16, and the square of 5 is 25. We enter the X values as an independent
variable and then the Y values as the dependent variable. We need to be
careful that the input does not exceed 9 in this example because we do not
define a corresponding value for Y above 9.

You can test the interpolation by entering a value for X in the In slot,
assuming not link is connected to the Linearize component. This is done here.
Notice that the result is 56.5 for an input value of 7.5. The correct value
would have been 56.25, which is very close.

45

The SRLatch appears to be a straight-
forward logic block. The output would
become true if the set (S) pin is high and
would go low if the reset (R) pin goes high.
However, both the S and R pins are positive
leading-edge sensitive. Regardless of their
steady-state condition, the output (Out) will
only change on the false-to-true transition
of either input. If this occurs on the S pin,
the output goes high and will remain high
until the R pin does its transition.

On the rare condition that both S and R
transition from false-to-true during the
same logic scan, R will take precedence
because its state is tested last in the logic,
and therefore the output will be false.

46

The LP or loop component is one of the
most complex components. It can provide
three modes of control P-proportional, I-
integral, and D-derivative. In this example,
we will assume a temperature loop with a
setpoint (Sp) of 72 degrees and a
controlled variable (Cv) currently as 72.5
degrees which is the space temperature
that we want to control.

47

Enable must be configured true, otherwise there is no control.

Kp is the proportional gain which defaults to 1. Notice that the error signal is
Cv-Sp or 0.5. The error multiplied by the proportional gain of 1 yields an
output of 0.5. If the Ki and Kd factors are used, their contributions are also
multiplied by the proportional gain factor. Ki is the integral gain in units of
resets per minute. It is multiplied by the error signal. Kd is the derivation gain
in seconds, and it is also multiplied by the error signal.

Min and Max are the limits of the output signal. They can be set to any value.
Bias can offset the output regardless of the error. MaxDelta sets the rate of
change of the output within the output limits. This will slow the output
swing.

For a cooling application, set Direct to true. For heating, set it to false. The
loop equation is solved each execute time (ExTime) in milliseconds.

Bias only applied to
proportional-only (P) control.
When using a PI controller, reset-
windup can be minimized by
limiting the output range.

48

The linear sequencer (Lseq) provides a
digital representation of an input float
similar in operation to a bar graph on
audio equipment. It is easier to
understand its operation using an
integer input. There are 16 possible
Boolean outputs plus one overflow
(Ovfl) flag. The input ramp provides a
triangle wave from 0 to 100. The
sequencer was configured for a 0
minimum input and 100 maximum
input. The maximum number of
outputs was configured for 9, yielding
a Delta of 10.

49

The range of the linear sequencer is configured using InMin at the low
end and InMax at the high end. Selecting the number of outputs
(NumOuts) determines the difference (Delta) between successive
outputs turning on. In this case, the range is 100, and the number of
desired outputs is 9. Divide 100 by NumOuts +1, and you will get a Delta
of 10.

You will notice that the input (In) is at 60, and D On is indicating that six
outputs are on. With an input between 0-9, there are no outputs on, but
once you hit a decade such as 10, 20 on up to 90, successive outputs will
come on. At the maximum of 100, nine outputs will come on. If the input
exceeds the maximum intended, the overflow flag will set, but the
number of outputs will remain as specified by NumOuts.

50

The reheat sequencer (ReheatS) provides a
linear sequence of up to four outputs based
upon their input float (In). The threshold for the
four outputs can be configured for increasing
values of the input. As the input increases to
each threshold, the corresponding output will
go on. As the input decreases below the
threshold, the corresponding output will remain
on until the hysteresis value is exceeded.

51

Enable must be set to true, otherwise the outputs will be false.

There are four possible threshold settings corresponding to four
outputs. As the input signal increases to each threshold, its
corresponding output goes on and stays on until the input drops
below the threshold plus the value of the hysteresis.

The input signal is decreasing, but it has not exceeded the amount of
the threshold, so output 3 (Out3) remains set. Once the signal is
below 2.75, output 3 will go off.

52

The Reset component (Reset) will scale the output
linearly between two limits. The input ranges must
be configured by setting InMin and InMax. The
corresponding output for those two points must be
configured as OutMin and OutMax. If the input
signal exceeds the defined input range, the output
will be clamped to one of the two output limits.

In this example, we are converting degrees Celsius to
degrees Fahrenheit within the 0 - 100-degree Celsius
range. Therefore, we set OutMin an OutMax to the
corresponding Fahrenheit values. All Celsius input
values between these two limits will be interpolated
thereby providing the correct Fahrenheit values.

53

The Tstat is an on/off temperature controller
for either heating or cooling. For heating
configure, the IsHeating is set to true. The
deadband can be set by the Diff value. If the
controlled variable (Cv) deviates from the
setpoint (Sp) by half the Diff value, the output
(Out) will become true and stay set until Cv
deviates from the setpoint by a like amount in
the other direction. In this way, Diff also
provide hysteresis. The Raise and Lower
outputs are a function of the IsHeating
setting. If Is heating is true, Out=Lower,
otherwise Out=Raise.

54

However, if you need specific information from the component for the driving logic, you can connect to
the various integer outputs, such as Hour, Minute and Second.

There are two schedule components which have different output types. One is for Boolean, and the other
is for float. There is no need to connect the DateTim component to either of the schedulers. Each
scheduler can handle two events over the 24-hour period by configuring the time and duration of each
event. The output of each schedule will change with each event. If more events or more outputs are
needed, multiple schedulers can be placed on the wiresheet.

The DateTim
component
provides real-time
information. There
is no need to place
it on the wiresheet.

55

Configuration of the two scheduler components is similar.
For the float version, Val1 and Val2 need to be specified
along with the start times (Start1 and Start2) and the
durations (Dur1 and Dur2). The output (Out) will assert
either Val1 and Val2 during the scheduled times. If neither
are programmed, the DefVal should be configured.

56

Priority array (Priorit) components exist for Boolean, float and
integer values. Up to 16 levels of priority from In1 to In16 can
be assigned. In1 has the highest priority and In16 the lowest. If
a priority level is not assigned, it is marked as a Null and
therefore ignored. If a Null is inputted to priority array as
shown in this example, the priority array will ignore it and
choose the next in line input. The Boolean version of the
priority array has two timer settings – one for minimum active
time and one for minimum inactive time. If the highest priority
device changes from false to true and then back to false, the
priority component will maintain the event for the configured
times.

57

There is a fallback setting in each priority array that can be specified. If no valid
priority input exists, the Fallback value is transferred to the output. The
OverrideExpTime guards against the possibility of an indefinite override condition.

58

When you right-click on the priority
component and select Actions, you will
have several choices for overriding the
current priority selection made by the
component. The override choices vary
depending on the type of variable
supported by the priority component.
In this example, the Priority Boolean
was selected. Setting an override using
a tool is only temporary. Eventually,
the component will time out and
revert to normal priority selection.

Thank You

Learn more at
www.ccontrols.com

	Understanding Sedona Core Components using the BAScontrol Toolset
	Interconnecting Components on Wiresheets to Create Applications
	Getting Started – Launch SAE
	Understanding the Wiresheet Structure
	Understanding Components
	Saving Your Application and Project
	Variable Types
	Configuring Constants
	Using Write Constants
	Converting Between Component Types
	Converting from Float-to-Boolean and Boolean-to-Float
	Converting from Float-to-Boolean and Boolean-to-Float (continued)
	Negating a Boolean Variable — Inverting Your Logic
	Boolean Product — “ANDing” Boolean Variables
	Boolean Sum — “ORing” Boolean Variables
	Creating an Exclusive OR — A OR B but Not Both
	Cascading Logic Blocks and Unused Inputs
	Cascading Logic Blocks and Unused Inputs (continued)
	Cascading Logic Blocks and Unused Inputs (continued)
	Selecting Boolean, Float or Integer
	Selecting Boolean, Float or Integer �(continued)
	Selecting Boolean, Float or Integer �(continued)
	De-Multiplexing
	Creating Float Addition
	Creating Float Subtraction
	Creating Float Multiplication
	Creating Float Division
	Finding Minimums and Maximums
	Finding Minimums and Maximums (continued)
	Rounding Off Floats
	Averaging Successive Readings
	Averaging Successive Readings (continued)
	Creating On-Delays and Off-Delays
	Creating On-Delays and Off-Delays (continued)
	Using the Timer
	Using One-Shots — Mono-Stable Multivibrators
	Creating Ramps — A-Stable Multivibrators
	Creating Ramps — A-Stable Multivibrators (continued)
	Comparing Two Floats
	Creating a Simple Clock — the Tick Toc
	Introducing Counters
	Operating on Real-World Signals — Hysteresis and Limiting
	Handling Non-Linear Signals
	Handling Non-Linear Signals (continued)
	Creating a Simple Set-Reset Flip Flop — Bi-Stable Multivibrator
	Creating the Loop Component — Basic Analog Controller
	Creating the Loop Component — Basic PID Controller
	Creating a Linear Sequencer — Bar-Graph Representation of a Float
	Creating a Linear Sequencer — Bar-Graph Representation of a Float (continued)
	Creating a Reheat Sequencer — Four Staged Outputs from a Float Input
	Creating a Reheat Sequencer — Four Staged Outputs from a Float Input (continued)
	Reset — Scaling a Float Input Between Two Limits
	Setting Tstat — Basic On/Off Temperature Controller
	Setting the Real-Time Clock and Scheduling
	Setting the Real-Time Clock and Scheduling (continued)
	Creating Priority Arrays
	Creating Priority Arrays (continued)
	Creating Priority Arrays (continued)
	Slide Number 59

